Mlinganyo wa hali ya gesi bora. Isoprocesses katika gesi

Orodha ya maudhui:

Mlinganyo wa hali ya gesi bora. Isoprocesses katika gesi
Mlinganyo wa hali ya gesi bora. Isoprocesses katika gesi
Anonim

Hali ya gesi ya jambo linalotuzunguka ni mojawapo ya aina tatu za kawaida za maada. Katika fizikia, hali hii ya umajimaji ya mkusanyiko kawaida huzingatiwa katika ukadiriaji wa gesi bora. Kwa kutumia ukadiriaji huu, tunaeleza katika makala uwezekano wa isoprocesses katika gesi.

Gesi bora na mlinganyo wa ulimwengu wote wa kuielezea

Gesi bora ni ile ambayo chembe zake hazina vipimo na haziingiliani. Kwa wazi, hakuna gesi moja ambayo inakidhi hali hizi, kwani hata chembe ndogo - hidrojeni, ina ukubwa fulani. Zaidi ya hayo, hata kati ya atomi za gesi zisizo na upande wowote, kuna mwingiliano dhaifu wa van der Waals. Kisha swali linatokea: katika hali gani ukubwa wa chembe za gesi na mwingiliano kati yao unaweza kupuuzwa? Jibu la swali hili litakuwa uzingatiaji wa hali zifuatazo za kifizikia-kemikali:

  • shinikizo la chini (takriban angahewa 1 na chini);
  • joto la juu (karibu na halijoto ya chumba na zaidi);
  • ajizi ya kemikali ya molekuli na atomigesi.

Ikiwa angalau moja ya masharti hayajatimizwa, basi gesi inapaswa kuchukuliwa kuwa halisi na kuelezewa na mlingano maalum wa van der Waals.

Mlingano wa Mendeleev-Clapeyron lazima uzingatiwe kabla ya kusoma isoprocesses. Equation bora ya gesi ni jina lake la pili. Ina nukuu ifuatayo:

PV=nRT

Yaani, inaunganisha vigezo vitatu vya halijoto: shinikizo P, halijoto T na ujazo wa V, pamoja na kiasi n cha dutu hii. Alama R hapa inaashiria mduara wa gesi, ni sawa na 8.314 J / (Kmol).

Isoprocesses katika gesi ni nini?

Michakato hii inaeleweka kama mpito kati ya hali mbili tofauti za gesi (ya awali na ya mwisho), kwa sababu hiyo baadhi ya kiasi huhifadhiwa na nyingine kubadilika. Kuna aina tatu za isoprocess katika gesi:

  • isothermal;
  • isobaric;
  • isochoric.
Emile Clapeyron
Emile Clapeyron

Ni muhimu kutambua kwamba zote zilichunguzwa kwa majaribio na kuelezewa katika kipindi cha kuanzia nusu ya pili ya karne ya 17 hadi 30s ya karne ya 19. Kulingana na matokeo haya ya majaribio, Émile Clapeyron mnamo 1834 alipata mlinganyo ambao ni wa ulimwengu wote kwa gesi. Makala haya yameundwa kwa njia nyingine - kwa kutumia mlinganyo wa hali, tunapata fomula za isoprocesses katika gesi bora.

Mpito kwa halijoto isiyobadilika

Inaitwa mchakato wa isothermal. Kutoka kwa equation ya hali ya gesi bora, inafuata kwamba kwa joto la mara kwa mara katika mfumo uliofungwa, bidhaa lazima ibaki mara kwa mara.kiasi hadi shinikizo, yaani:

PV=const

Uhusiano huu kwa hakika ulizingatiwa na Robert Boyle na Edm Mariotte katika nusu ya pili ya karne ya 17, kwa hivyo usawa uliorekodiwa sasa una majina yao.

Vitegemezi vya kiutendaji P(V) au V(P), vinavyoonyeshwa kwa picha, vinafanana na hyperbolas. Kadiri halijoto ya juu ambapo majaribio ya isothermal hufanywa, ndivyo bidhaa PV inavyoongezeka.

Sheria ya Boyle - Mariotte
Sheria ya Boyle - Mariotte

Katika mchakato wa isothermal, gesi hupanuka au kupunguzwa, ikifanya kazi bila kubadilisha nishati yake ya ndani.

Mpito kwa shinikizo la mara kwa mara

Sasa hebu tuchunguze mchakato wa isobaric, wakati ambapo shinikizo hudumu. Mfano wa mabadiliko hayo ni inapokanzwa kwa gesi chini ya pistoni. Kama matokeo ya kupokanzwa, nishati ya kinetic ya chembe huongezeka, huanza kupiga pistoni mara nyingi zaidi na kwa nguvu kubwa, kama matokeo ya ambayo gesi huongezeka. Katika mchakato wa upanuzi, gesi hufanya kazi fulani, ambayo ufanisi wake ni 40% (kwa gesi ya monatomic)

Kwa isoprosesa hii, mlinganyo wa hali kwa gesi bora unasema kwamba uhusiano ufuatao lazima ushikilie:

V/T=const

Ni rahisi kupata ikiwa shinikizo la mara kwa mara litahamishiwa upande wa kulia wa mlinganyo wa Clapeyron, na halijoto - upande wa kushoto. Usawa huu unaitwa sheria ya Charles.

Usawa unaonyesha kuwa chaguo za kukokotoa V(T) na T(V) zinafanana na mistari iliyonyooka kwenye grafu. Mteremko wa mstari wa V (T) unaohusiana na abscissa utakuwa mdogo, shinikizo kubwa zaidi. P.

Sheria ya Charles
Sheria ya Charles

Mpito kwa sauti isiyobadilika

Mchakato wa mwisho katika gesi, ambao tutazingatia katika makala, ni mpito wa isochoriki. Kwa kutumia mlingano wa jumla wa Clapeyron, ni rahisi kupata usawa ufuatao kwa mpito huu:

P/T=const

Inapokanzwa gesi ya Isochoric
Inapokanzwa gesi ya Isochoric

Mpito wa isochoric unafafanuliwa na sheria ya Mashoga-Lussac. Inaweza kuonekana kuwa kielelezo kazi P(T) na T(P) zitakuwa mistari iliyonyooka. Miongoni mwa taratibu zote tatu za isochoric, isochoric ni ya ufanisi zaidi ikiwa ni muhimu kuongeza joto la mfumo kutokana na ugavi wa joto la nje. Wakati wa mchakato huu, gesi haifanyi kazi, yaani, joto lote litaelekezwa ili kuongeza nishati ya ndani ya mfumo.

Ilipendekeza: